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Abstract-Evaporation from a liquid pool which partially fills a circular tube into an otherwise quiescent 
ambient has been investigated by a succession of models and accompanying numerical solutions. The 
modeling included consideration of: (a) evaporation occurring under both isothermal and non-isothermal 
conditions as related to the absence or presence of depression of the temperature at the liquid surface, (b) 
interactions between the velocity, mass fraction, and temperature fields in the gas-vapor space in the tube 
and in the ambient, (c) natural convection in the gas-vapor space, (d) radiative interchange in the gas- 
vapor space, (e) natural convection in the liquid pool, and (f) conduction in the insulation surrounding 
the tube, in the tube wall, and in the liner between the tube and the insulation. By using a special set of 
closure conditions at the open top of the tube, it was found that evaporation rates (i.e. Sherwood numbers) 
of acceptable accuracy can be obtained without having to extend the numerical solutions into the ambient. 
Another key finding was that the depression of the temperature at the liquid surface decreased the Sherwood 
number. When radiative transfer in the gas-liquid space was activated, the temperature depression dimin- 
ished and the Sherwood number markedly increased. Natural convection in the liquid pool also acted to 

lessen the temperature depression and to increase the Sherwood number. 

INTRODUCTION 

THIS PAPER is concerned with the formulation and 
numerical implementation of analytical models for 
the evaporation of a liquid from a partially filled cyl- 
indrical tube. The tube is vertical, and its upper end 
is open to a fluid environment consisting of a binary 
mixture of a gas and the vapor of the evaporating 
liquid. Aside from effects associated with the presence 
of the tube (to be explored here), the environment is 
quiescent and of uniform temperature and uniform 
species concentration. Although the formulation is 
general, the specific focus of the work is on the evap- 
oration of water into air which contains water vapor. 

The modeling/computational effort to be described 
here was taken from a larger work [l] which also 
included experiments. The experiments will not be 
reported here because the description of the modeling 
and computational work already constitutes a paper 
of substantial length. However, the course of the 
modeling and computations was guided by the need 
to provide predictions for comparison with the exper- 
imental data. Therefore, frequent reference will be 
made to the experiments and to the conditions under 
which they were performed. 

If the partial pressure of the vapor in the ambient 
is lower than the vapor pressure at the surface of the 
liquid pool which occupies the lower portion of the 
tube, evaporation will occur at the surface. In steady- 
state operation, energy must be supplied to the surface 
to satisfy the latent heat requirements of the evap- 
oration process. In general, the energy may be deliv- 
ered to the surface through the gaseous mixture or 

through the liquid pool. The energy delivered through 
the gaseous mixture is drawn from the ambient at the 
top of the tube, while that delivered through the liquid 
flows from the ambient to the tube wall and then into 
the liquid. 

If the tube is uninsulated and made of high con- 
ductivity material, then the liquid temperature is vir- 
tually identical to that of the ambient. The gas-vapor 
mixture also takes on the ambient temperature. Thus, 
the entire system is virtually isothermal. This is one 
of the cases to be analyzed here and which was inves- 
tigated experimentally in ref. [ 11. 

When the tube is made from a low conductivity 
material and is well insulated, the aforementioned lat- 
ent heat requirements for evaporation are supplied in 
significant part by energy passing from the ambient 
through the gas-vapor mixture to the liquid surface. 
Because of the finite thermal resistance of this heat 
flow path, the temperature of the surface must take 
on a value below that of the ambient. The extent of 
this temperature depression depends on the quality of 
the insulation at the tube wall as well as on the thermal 
resistance of the path through the gaseous mixture. 

The situation described in the preceding paragraph 
will be termed non-isothermal evaporation. It is the 
second general case to be treated here and studied 
experimentally in ref. [ 11. 

All of the analytical and experimental work encom- 
passed by the present investigation deals with the 
evaporation of a vapor the molecular weight of which 
is lower than that of the gas (e.g. water vapor evap- 
orating into air). For this condition and for the afore- 
mentioned case of isothermal evaporation, the density 
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NOMENCLATURE 

CP 
specific heat L; radial velocity component 

D mass diffusion coefficient w, mass fraction of vapor 
d inner diameter of tube W,, value of W, at liquid surface 
F angle factor Wl, value of W, in ambient 

R 
acceleration of gravity X axial coordinate. 

IT” 
latent heat of evaporation 
mass transfer coefficient, equation (29) 

k thermal condu~ti~ty 
Greek symbols 

L distance between liquid surface and top 
P viscosity 
v 

of tube 
kinematic viscosity 

M molecular weight 
P density 

A4 overall rate of evaporation 
vit local rate of evaporation 

L 

Stefan-Boltzmann constant 
relative humidity of vapor in ambient. 

P pressure 

4 rad net rate of radiative transfer per unit area Subscripts 

R inner radius of tube ins insulation 

Ra Rayleigh number, equation (26) S liquid surface 

B 
radial coordinate 1 vapor 

Schmidt number 2 gas 

5% Sherwood number, KdfB 
co ambient. 

T temperature 
T i”, temperature at interface between Superscripts 

subdomains * reference state for properties in gas- 

T, liquid surface temperature vapor space (subdomain II) 

TO3 ambient temperature ** reference state for properties in 
U axial velocity component subdomain I. 

of the gas-vapor mixture will increase in the upward 
direction from the liquid surface to the top of the tube. 
This situation is unstable and will give rise to natural 
convection motions. 

For the case of non-isothermal evaporation, the 
decrease of the temperature of the gas-vapor mixture 
in the downward vertical direction opposes the estab- 
lishment of the species-related upward increase of the 
mixture density. The resulting shape of the density 
variation depends on the extent of the temperature 
depression. Natural convection may still occur in non- 
isothermal evaporation, but its vigor will be dimin- 
ished relative to that for the isothermal evaporation 
case. 

From the foregoing discussion, the inclusion of 
natural convection is seen to be an essential feature of 
the modeling. Another issue which has to be addressed 
in both the isothermal and non-isothermal cases is the 
effect of the transport processes in the tube on the 
ambient. When natural convection occurs in the tube, 
fluid will stream between the ambient and the tube, 
with inflow occurring over part of the tube opening 
and outflow occurring over the other part. 

The fluid outflow from the tube to the ambient 
possesses vapor and temperature levels which cause 
departures from the otherwise uniform ambient 
species concentration and temperature (temperature 
effects are contined to the case of non-isothe~al 

evaporation). The size of the ambient region affected 
by these induced nonuniformities is also unknown, 
Inclusion of the ambient in a numerical simulation of 
the in-tube evaporation problem demands significant 
computational resources. 

There are a number of other modeling issues that 
have to be considered specifically for the non-iso- 
thermal evaporation problem. The simplest of these 
is heat conduction in the insulation layer which sur- 
rounds the tube and in the tube wall itself. A more 
complex issue is the heat transfer and fluid flow in the 
liquid pool, with the fluid motions being induced by 
buoyancy brought about by temperature differences. 
Finally, there is the somewhat subtle issue of radiative 
transfer between the water surface, the tube wall, and 
the ambient. 

The foregoing discussion has served to outline the 
participating physical processes. Now, attention will 
be turned to setting forth the modeling of these pro- 
cesses. 

The first phase of the modeling work will be 
entitled: The Simplest Isothermal and Non-iso- 
thermal Models. Here, consideration is confined to 
the gas-vapor mixture which fills the space between 
the liquid surface and the open top of the tube. For 
this region, numerical solutions were carried out for 
the governing differential equations expressing con- 
servation of momentum, mass of the mixture, mass of 



Isothermal and non-isothermal evaporation from a partially filled tube 463 

the vapor, and energy (for the non-isothermal case). 
For the isothermal case, the only noteworthy approxi- 
mation is the neglect of the interaction between the 
tube and the ambient. Thus, for this case, the model 
can be regarded as a possible source of valid results 
for the rate of evaporation. 

Non-isothermality is activated by parametrically 
prescribing the temperature of the surface of the liquid 
pool, while neglecting all of the processes discussed in 
an earlier paragraph. This neglect constitutes a severe 
oversimplification. Yet, the results from this model 
will be useful in demonstrating certain trends and, 
more importantly, as a basis for comparisons with the 
next level of modeling. 

The next phase of the modeling is entitled : Assess- 
ment of the Role of the Ambient. The modeling 
involves the coupling of the aforementioned simplest 
models, which were restricted to the gas-vapor region 
of the tube, with a cylindrical region in the ambient 
within which the tube-related deviations from uni- 
formity are assumed to be confined. Parametric vari- 
ations were made in the size of the cylindrical region 
to properly account for the tube-ambient inter- 
actions. The governing conservation equations were 
solved numerically for the two regions of the solution 
domain. 

For the isothermal case, this model and its numeri- 
cal results mark the terminal point of the modeling, 
since there are no further refinements to be made. 
However, for the non-isothermal case, this is only a 
way station, but one which yields an important find- 
ing. Specifically, comparison of the results from the 
simplest model with those from the ambient-including 
model show deviations in the 5% range for the rate 
of evaporation. This finding provides license for the 
neglect of the ambient in the subsequent in-depth 
modeling of the non-isothermal case, where all of the 
many processes that were discussed earlier will be 
taken into account. 

The final phase of the modeling bears the title : In- 
depth Modeling of the Non-isothermal Case. All the 
models considered in this phase of the work include 
mass, heat, and momentum transfer in the gas-vapor 
mixture which occupies the space between the liquid 
surface and the top of the tube. Model NI 1 
(NI N non-isothermal) adds heat conduction in the 
insulation surrounding the tube and in the liquid pool. 
To this, model NI 2 adds radiative transfer between 
the liquid surface, the tube wall, and the ambient. 
Natural convection in the liquid pool is added in 
model NI 3. Finally, in model NI 4, heat conduction 
in the tube wall is added, plus, for fidelity with the 
experimental setup, heat conduction in a liner situated 
between the tube and the surrounding insulation. 
Numerical solutions were obtained for each of these 
complex systems. 

The menu of this paper is now complete, and atten- 
tion will be turned to the literature. Aside from an 
earlier work by the authors [2], to be discussed shortly, 
it appears that all prior studies of evaporation from a 

partially filled tube were restricted to diffusion-driven 
transport in the gas-vapor mixture situated between 
the liquid surface and the tube opening. No con- 
sideration was given to features such as natural con- 
vection and radiation, participation of the ambient, 
heat transfer and fluid flow in the liquid pool, and 
conduction in the insulation and tube wall. 

The isothermal version of the diffusion-driven evap- 
oration problem is the classical Stefan diffusion prob- 
lem, which is widely reported in the literature (e.g. 
refs. [3-61). The results of the Stefan problem have 
been used as the basis of an experimental method for 
determining the mass diffusion coefficient [7, 81. The 
problem of non-isothermal diffusion-driven evap- 
oration was treated in ref. [9], where it was assumed 
that the latent heat requirement was totally supplied 
by energy passing from the ambient through the gas- 
vapor mixture to the liquid surface. 

In ref. [2], the present authors dealt with the iso- 
thermal version of what has been designated here as 
the simplest model. That work will be repeated here 
for more realistic operating parameters. 

THE SIMPLEST ISOTHERMAL AND 

NON-ISOTHERMAL MODELS 

The solution domain for these models is the portion 
of the tube between the surface of the liquid and 
the open top. This space is filled with the gas-vapor 
mixture. The tube is of radius R, and the distance 
between the liquid surface and the top of the tube is 
L. The coordinates to be used in the analysis are x, r 
cylindrical coordinates centered at the mid-point of 
the liquid surface, with x pointing vertically upward. 
In terms of these coordinates, the solution domain is 
defined by 0 < r < R, 0 < x < L. 

In the analysis, the vapor will be denoted by sub- 
script 1, while subscript 2 will be used to denote the 
gas. It will be assumed that the liquid surface is imper- 
meable to the gas. 

The isothermal case 
In this case, the temperature is uniform throughout 

the solution domain and equal to the ambient tem- 
perature T,. The vapor pressure in the ambient is 
maintained at a value below the vapor pressure at 
the liquid surface (equal to the saturation pressure 
corresponding to T,), so that evaporation occurs. 

The fluid flow and mass transfer are governed by 
four conservation equations : 

conservation of x-momentum 

p*[u(au/dx)+u(au/ar)] = -+/ax+p*V’u-pg; 

(I) 

conservation of r-momentum 

p*[u(av/ax)+u(au/ar)] = -@/~%+p*(V~u-u/r’); 

(2) 
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mass conservation for the mixture 

au~ax+atqad- v/r = 0; 

mass conservation for snecies 1 

be balanced by a convective flow away from the sur- 

(3) 
face (i.e. in the positive x-direction) in order that the 
net flow of the gas be zero at the surface. The velocity 
associated with this convective flow is derived in stan- 

u(aw,/ax)+v(aw,/ar) = D*VW, (4) 
dard textbooks (e.g. equation (5-23) in ref. [6]) as 

where W, is the mass fraction of the vapor. 

In these equations, p*, p*, and D* represent con- 
stant property values. In particular 

P* = (Pm +Ps)/2 (5) 

while p* is the viscosity of the gas evaluated at the 
(uniform) temperature T,, and 

D* = /P/p* SC (6) 

in which the Schmidt number SC is a constant. In 
equation (5), pm and ps respectively denote the den- 
sities of the gas-vapor mixture in the ambient (sub- 
script co) and at the liquid surface (subscript s). 

The key feature of these equations is the variation 
of the mixture density p which appears in the body 
force term of equation (1). Note that in the present 
formulation, buoyancy will emerge automatically as 
a consequence of the density variations. This is in 
contrast to the conventional practice whereby a buoy- 
ancy term is created by adding and subtracting prefg 
to the right-hand side of equation (1). 

The density is represented by the perfect gas law 

u = -vu1 - ws)iwwwx=, 

where D will be evaluated as D*. 

(11) 

The boundary conditions at the open top of the tube 
(x = L) were selected to enable the in-tube solution to 
be obtained without having to deal with tube-ambient 
interactions. The selected velocity conditions are 

v = 0, au/ax = 0. (12) 

These closure conditions do not impose prejudicial 
constraints on the velocity field provided that the 
finite-difference grid used in the numerical solutions 
is closely packed in the region adjacent to the top of 
the tube. 

With regard to the mass fraction, fluid flowing from 
the ambient into the tube will carry the ambient vapor 
mass fraction Wlm, assumed, at present, to be 
unaffected by the presence of the tube. On the other 
hand, fluid that exits the tube will carry mass fractions 
greater than W,, which, however, are unknown. 
These observations suggest the following boundary 
conditions for W, at x = L 

P = (PIRTW (7) 

where i? is the universal gas constant, and M is the 

W, = W,, foru<O 

aw,/ax = 0 for u > 0. 

(13a) 

(I3b) 

molecular weight. In terms .of the molecular weights 
M, and M2 of the components and of the local mass 

The second condition allows the solution the freedom 

fraction W, of the vapor, M is given by 
to determine the W, distribution in the outflow 
stream. For concreteness, equations (13a) and (13b) 

M= M,M2/[W,M,+(l- W,)M,]. (8) will be termed the inflow/outflow boundary condition. 

Since W, varies throughout the solution domain, so 
The tube wall (r = R) is impermeable to both the 

do Mand p. 
gas and the vapor. From this, it readily follows that 
r?, 

Attention may now be turned to the boundary con- 
LLJ 

ditions. At the liquid surface (x = 0) v=o, aw,/ar=o. (14) 

v = 0 and W, = W,,. (9) 

Note that WI, was not specified as such but rather 
was determined from other prescribed conditions as 
follows. Since T, = T, in the problem under con- 
sideration and since the liquid surface is a saturation 
state, thenp IS = p ,,+, corresponding to T,. Also, since 
the total pressure p is virtually constant, then 
pzs = p--pls can be found, from which pzs follows 
from the perfect gas law. Then 

WI, = P,sKP,,+P,,) (10) 

However, no totally definitive statements can be made 
about the no-slip boundary condition. The uncer- 
tainty arises because 8 W,/dx # 0 at the tube wall, so 
that there is a diffusive flux directed axially along the 
wall. Therefore, the no-slip condition at the wall 

u=o (15) 

will be invoked as an assumption. If there were to be 
slip, the convective motions would be more vigorous 
than those corresponding to the no-slip assumption. 

where pls is the saturation density of the vapor at 
In this sense, the latter assumption is conservative. 

temperature T, = T,. 
Along the centerline of the tube (r = 0), the sym- 

The velocity u perpendicular to the liquid surface is 
metry conditions are represented by 

not zero because the surface is impermeable to the 
gas. There is a diffusive flow of the gas toward the 

v = aular = aw,lar = 0. (16) 

surface because the partial pressure of the gas This completes the formulation of the simplest 
decreases with decreasing x. This diffusive flow must model for the isothermal case. 
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The non-isothermal case 
The governing differential equations for the non- 

isothermal case include equations (l)-(4) plus energy 
conservation 

= k*V*T+p*D*(c,, -c,,z)(VW, -VT). (17) 

In this equation, p* is as defined by equation (5) while 
other reference quantities are introduced as 

non-uniform grid, respectively in the x- and r-direc- 
tions. The number of grid points was determined by 
trial runs aimed at finding grid-independent solutions. 
For the layout of the grid, a two-step process was 
employed. First, solutions were obtained for a uni- 
form grid. Then, based on the velocity distributions 
from these solutions, the grid was redeployed on a 
point-by-point basis in order to accommodate locally 
rapid variations. 

Ii’: = (II’,, + W,,)/Z, T* = (T, + T&2 (18) 

and 

c,* = W&,+(1-IF:)+. (19) 

The viscosity /J* and thermal conductivity k* were 
taken as those of the gas corresponding to T*, and 
D* is from equation (6). Note that account has been 
taken of the energy transported by diffusion of mass 
(last term of equation (17)). It should also be noted 
that the variation of the mixture density, which drives 
the natural convection, now responds to temperature 
variations in addition to mass fraction variations (see 
equation (7)). 

As is standard for elliptic-type natural convection 
problems, substantial underrelaxation was required 
to achieve convergence. Convergence was also aided 
by first running solutions for a sparse grid and then 
using these solutions as input to a refined grid, the 
solutions of which were, in turn, used as input to a 
still finer grid. 

Parameters 

As noted in the Introduction, the non-isothermal 
model to be dealt with in the simplest model category 
is highly oversimplified. In particular, the temperature 
at the liquid surface will be prescribed parametrically, 
without consideration of the processes which con- 
tribute to establishing its value. Those processes will 
be dealt with later. The present model is defined at 
x=Oby 

The numerical solutions to be reported here were 
performed using input conditions representative of 
those encountered during the experiments-but not 
the specific conditions of any given data run. Since 
the experiments were performed for the evaporation 
of water into air which contains water vapor, the 
numerical work also dealt with this situation. For the 
isothermal case, the input parameters were 

T= T, 

with an adiabatic tube wall (r = R) 

(20) 

T = T, = 22”C, pm = 740 mm Hg, 4m = 0.3, 

0.35 < L/d $ 3. (24) 

Note that the relative humidity r#~ was specified instead 
of the mass fraction W,. This is because the mag- 
nitudes of the former are more familiar than those of 
the latter. For the non-isothermal case, T,, pm, and 
dm were as in equation (24), with the added conditions 

aT/ar = 0 (21) 

the inflow/outflow closure condition at the top of the 
tube (x = L) 

T= T, for u < 0 (22a) 

aqax = 0 for u > 0 (22b) 

and symmetry at the centerline (r = 0) 

195°C < T, < 22°C L/d = 1. (25) 

It is relevant to compute the Rayleigh numbers 
which correspond to these conditions. Since the natu- 
ral convection motions considered here are both mass 
fraction and temperature driven, it is proper to use a 
Rayleigh number based on a density difference rather 
than on a temperature difference 

aT/ar = 0. (23) 

This completes the description of the simplest non- 
isothermal model. 

Numerical aspects 

Ra = ]gp*(pm -ps)d3/~**lSc (26) 

where the starred quantities have already been 
defined. Note that the Rayleigh number is positive 
when ps < pm. The Schmidt number SC is 0.60 for the 
water vapor/air system. 

The discretization of the governing differential 
equations follows the practice described in ref. [lo]. 
The solution domain was subdivided into a number of 
non-overlapping control volumes, and the differential 
equations were integrated over each control volume. 
This procedure is conventional and need not be elab- 
orated. The discretized equations were solved as an 
adaptation of the SIMPLER numerical scheme, with 
the block correction of ref. [ 1 l] incorporated to speed 
convergence of the iterative procedure. 

For the isothermal case, Ra = 9.2 x lo’, while for 
the non-isothermal case, Ra ranges from 9.2 x lo3 to 
-3.9 x lo’, the negative value indicating that ps 
exceeds pm. 

The results for the evaporation rate &f will be 
reported in terms of the mass transfer coefficient K 
and the Sherwood number Sh. The evaporation rate 
ti per unit area at any location on the liquid surface 
is given by the sum of the convective and diffusive 
components 

The computations were performed on a 30 x 21 ti = P,,u-p,~*(aw,~a~),=, = psu (27) 
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STEFAN DIFFUSION 
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0.4 0.6 0.8 I 2 

L/d 

FIG. 1. Sherwood number results for isothermal evaporation. 

where the rightmost member follows by employing 
equation (11). Then 

s 

R 
n;r= 271rk dr. (28) 

0 

The mass transfer coefficient and Sherwood number 
are defined as 

K= (~lA)/(p~~-~,~), Sh = WD. (29) 

Here, A denotes the tube cross-sectional area xR2, 
while p ,s and p , m are the vapor densities at the liquid 
surface and in the ambient. For the simple models 
now being considered, p IS is constant along the liquid 
surface. However, for certain models to be employed 
later, p Is varied slightly with the radial coordinate r. 
For those cases, the surface-average value was used, 
i.e. 

s 

R 
p ,%21cr dr/nR 2. (30) 

0 

h%merical results 
The evaporation rate results for the simplest 

models, as conveyed by the Sherwood number, are 
presented in Figs. 1 and 2. The first of these figures is 
for the isothermal case, while the second figure is 
for the non-isothe~al case. Both figures are for the 
evaporation of water into air which contains water 
vapor. The parameter values for the isothermal case 
are set forth in equation (24), while the additional 
specifications for the non-isothermal case are con- 
veyed by equation (25). 

In Fig. 1, the Sherwood number is plotted as a 
function of the length~iameter ratio L/d of the space 
between the liquid surface and the top of the tube. 
In addition to the Sh vs L/d results for the simple 
isothermal model (dashed line), the figure also 
includes a dashed-dot line representing the solution 
for the Stefan diffusion problem 

Sh = l/fL,‘d). (31) 

The solid line represents a more complex isothermal 
model to be discussed later. 

Both the Stefan model and the present simple model 
are in trendwise agreement that the Sherwood number 
decreases as the distance between the Iiquid surface 

I I I I I I I 

19 20 21 22 
T, PC) 

FIG. 2. Response of the Sherwood number to parametric 
variations of the temperature of the liquid surface. 

and the top of the tube increases. However, the 
decrease in Sh is much more rapid for the Stefan 
case. For the range of L/d covered in the figure, the 
Sherwood numbers are substantially higher for the 
present model, which includes natural convection, 
than for the Stefan model, in which only diffusion is 
taken into account. For example, for L/d = 1, the 
respective Sherwood numbers are 2.7 and 1. It is seen, 
therefore, that natural convection plays a decisive role 
for the range of L/d depicted in the figure. This finding 
has already been set forth in ref. [2] for other operating 
conditions. 

Extrapolation of the Sh vs L/d curves to lower L/d 
values suggests a crossing of the curves so that the 
Stefan results will exceed those of the present model. 
Indeed, for the Stefan model, which is one-dimen- 
sional, Sh + co as L/d + 0. On the other hand, the 
small L/d behavior of the present two-dimensional 
model cannot so easily be assessed. This issue requires 
further investigation. 

Figure 2 shows the response of the Sherwood num- 
ber to parametric variations of the temperature T, of 
the liquid surface for a fixed value of L/d = 1. The 
dashed line represents the simple model, while the 
solid line is for a more complex model to be considered 
later. Since T, = 22°C the Sh value corresponding 
to T, = 22°C is equal to that of Fig. 1 for the iso- 
thermal case. 

As expected, the Sherwood number decreases as the 
water surface temperature is parametrically reduced. 
This is because the lower temperature opposes the 
species-related upward increase of the mixture density 
which furnishes the primary impetus for the natural 
convection. The sensitivity of Sh to decreasing T, 
di~nishes as Ra approaches zero. For T, < 20°C Ru 
is negative and Sh is quite insensitive to T,. 

Attention will now be turned to the pattern of fluid 
flow. Figure 3(a) displays a set of streamlines for the 
isothermal case with L/d = 1. These streamlines show 
that fluid from the ambient enters the tube in an 
annuIar region adjacent to the wall and that fluid 



Isothermal and non-isothermal evaporation from a partially fllled tube 467 

WALL AX!S 

(a) (b) 

FIG. 3. Patterns of fluid flow in the gas-vapor space com- 
puted from the simplest isothermal and non-isothermal 
models: (a) isothermal case, (b) non-isothermal case with 

T, = 2OS”C. 

leaves the tube in a circular zone which surrounds the 
axis. The streamline emanating from the liquid surface 
is indicative of the mass that is being added to the 
gas-vapor mixture due to evaporation. 

Figure 3(b), which corresponds to the non-iso- 
thermal case with T, = 20.X and L/d = 1, displays 
a pattern that is markedly different from that of Fig. 
3(a). In particular, the inflow from the ambient to the 
tube occurs adjacent to the axis, while the outflow 
occurs adjacent to the wall. 

These behaviors are reflected in the velocity profiles 
displayed in Figs. 4 and 5. In these figures, the axial 
velocity u is embedded in the dimensionless group 
wd/v which resembles a local Reynolds number. For 
selected axial stations defined by x/L, ud/v is plotted 
as a function of the dimensionless radial coordinate 
r/R. 

Figure 4 is for the isothermal case for L/d = 1. All 
the profiles are of the two-lobe type. The positive lobe, 
representing an axial upflow, extends from the tube 
axis to r/R _ 0.52, and the negative lobe, representing 
downflow, extends from r/R N 0.52 to the tube wall. 
Although the magnitudes of the velocities in both 
lobes increase with increasing x/L, the integral 

s 
ru dr 

across the section is the same for all profiles in the set. 
The velocity profiles displayed in Fig. 5(a) are for 

the non-isothermal case with T, = 21°C and L/d = I. 
These profiles are similar in form to those of Fig. 4 
for the isothermal case, but the magnitudes of the 
velocities are significantly diminished, reflecting the 
weakened buoyancy which results from the opposing 
effects of mass fraction and temperature on the density 
variation. 

In Fig. 5(b), the non-isothermal case with T, = 
20.5”C and L/d = 1 is displayed. Here, the velocity 
magnitudes have diminished so much that only the 
profile with the largest velocities, that at x/L = 1, 
need be plotted to convey the relevant information. 
In addition to the decreased magnitude, the two lobes 
are reversed. The inner lobe is now a region of negative 
velocity, while the outer lobe is a region of positive 
velocity. 

ASSESSMENT OF THE ROLE OF 

THE AMBIENT 

In the foregoing simple models, the interactions 
between the tube and the ambient were avoided by 
judicious selection of the boundary conditions at the 
open top of the tube. Consideration will now be given 
to an assessment of the effect of those interactions. 

The ambient-including model 
The description of the model used in the assessment 

is facilitated by reference to Fig. 6. As seen there, the 
ambient is modeled as a large cylindrical region the 
height L’ and radius R’ of which will be varied para- 
metrically. Also shown in the diagram is the portion 
of the tube between the liquid surface and the open 
top, the height and radius of which are L and R as 
before. In the model now under consideration, the 
liquid continues to play a passive role and is, therefore, 
not shown in the diagram. Owing to the assumed 
axisymmetry, only half of the solution domain is 
depicted in Fig. 6 (note that the left-hand boundary 
is the axis of symmetry). 

L I I I I I I I 1 I 

0 0.2 0.4 0.6 0.6 

r/R 

FIG. 4. Velocity profiles in the gas-vapor space for L/d = 1 computed from the simple isothermal model. 
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FIG. 5. Velocity profiles in the gas-vapor space for L/d = 1 computed from the simple non-isothermal 
model : (a) T, = 21”C, (b) Lr, = 20.5”C. 
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FIG. 6. Solution domain used for modeling the role of the 
ambient. 

The solution domain is subdivided into two parts. 
This two-s&domain treatment enabled a much larger 
number of grid points to be used than would have 
been possible had the entire solution domain been 
treated as a single unit. The ambient subdomain is a 
cylinder of height L’ and radius R'. However, the tube 
subdomain includes not only the tube itself but also 
a disk-like region, shown speckled in Fig. 6, situated 
atop the tube. Indeed, the speckled region, labeled 
ABCD, belongs to both the tube subdomain and the 
ambient subdomain. It is, therefore, a region of over- 
lap. 

The reason for the overlap is to facilitate a solution 
pattern consisting of successive visitations to each 
subdomain. At the conclusion of each such visit, the 
boundary conditions for the upcoming visit to the 
other subdomain are identified. The overlap region 
facilitates the identification, as will be detailed shortly. 

The governing differential equations are common 
to the two subdomains and are identical to those 
already stated for the simple models. For the iso- 
thermal case, the relevant equations are equations (lb 
(4), while for the non-isothermal case, equation (17) 
is added. 

The tube-subdomain boundary conditions at the 
liquid surface, at the tube wall, and at the axis are 
the same as those for the simple models. These are 
described by equations (9), (1 l), and (14~( 16) for the 
isothermal case, with equations (20), (21), and (23) 
added for the non-isothermal case. Note that the non- 
isothermal treatment continues to incorporate the 
many oversimplifications that were employed earlier 
but which will be lifted in the next section. 

The foregoing specification does not include bound- 
aries AB and BC which form the top of the tube 
subdomain. For now, it may be stated that the 
velocities u and u, the mass fraction W, and, if ap- 
propriate, the temperature T are specified on these 
boundaries. The manner in which the specification 
is accomplished will be evident when the solution 
pattern is described. 

The boundary conditions for the ambient sub- 
domain will now be considered. Excluding the axis 
and the tube opening CD, on the remaining bound- 
aries the velocity field is required to obey 

au/an = aupn = 0 (32) 

where n is the normal to the boundary. These con- 
ditions were selected so as not to impose significant 
constraints on the boundaries of the velocity field. 



Isothermal and non-isothermal evaporation from a partially filled tube 469 

On the same boundaries, under the assumption that 
interactions with the tube have died away there, it was 
assumed that 

W, = Wlm, T= T,. (33) 

Along the axis 

v = aular= aw,jar= aTlar=o. (34) 

At the boundary CD of the domain, it suffices for now 
to state that u, u, W,, and, if appropriate, T are 
specified. 

Numerical aspects 
For the numerical work, values of T,, p,, c),, L/d, 

and T, (for the non-isothermal case) are specified. 
The governing differential equations are discretized as 
before (following the practice of ref. [lo]) and are 
solved using the SIMPLER scheme supplemented by 
the block correction. The computations are begun in 
the tube subdomain. For this first round of com- 
putations, u, v, W,, and T (for the non-isothermal 
case) are assigned on AB and BC. Then, 15 iterations 
are performed in the tube subdomain. The values of 
u, u, WI, and Ton CD from the fifteenth iteration are 
then stored and used as the boundary conditions for 
the upcoming visit to the ambient subdomain. Fifteen 
iterations are then carried out in the ambient sub- 
domain, and, from the last of these, u, v, W,, and T 
on AB and BC are identified and stored for use as 
boundary conditions for the upcoming set of 15 iter- 
ations in the tube subdomain. The process is con- 
tinued until convergence. Note how the overlap of 
the two subdomains simplifies the updating of the 
boundary conditions. 

The foregoing description of the pattern of the com- 
putations will be completed by taking note of certain 
relevant details. The first has to do with global mass 
conservation for the tube subdomain, which requires 
that the rate of mass outflow be equal to the sum of 
the rate of mass inflow plus the rate of evaporation at 
the liquid surface. If the velocities on AB and BC were 
held fixed throughout all 15 iterations of a given set, 
global conservation would not be fulfilled because the 
rate of evaporation varies from iteration to iteration. 
To deal with this issue, at the end of each iteration in 
the tube subdomain, note is taken of the rates of 
inflow, outflow, and evaporation, and the following 
ratio is formed : 

(inflow + evaporation)/outflow. (35) 

Then, all the velocities on the outflow portion of the 
boundary are multiplied by this ratio, thereby satisfy- 
ing global conservation. 

The other issue to be noted is that in the SIMPLER 
scheme, the grid for the velocity is staggered relative 
to the so-called main grid which is used for the pres- 
sure, the mass fraction, and the temperature. As a 
result of this staggering, u velocities are not directly 
available along BC, and v velocities are not directly 
available along AB and CD. The needed velocities 

were obtained via linear interpolation [ 11, with proper 
account being taken of the staggering. 

A systematic numerical examination was made of 
the effect of the size of the ambient subdomain. This 
examination was performed for the isothermal case 
with T,, pm, and 4m specified by equation (24) and 
with L/d = 1. Initial computational experiments 
established that the Sherwood number which char- 
acterizes the evaporation rate was insensitive to the 
height L’ of the ambient subdomain when L’ > 6R 
(R = tube radius). Then, with L’ fixed at 6R, the radial 
dimensions of the subdomain were assigned values 
R’ = 3R, 6R, 8R, and 10R. The corresponding grid 
point populations were (axial x radial) 20 x 30, 
20 x 34,20 x 36, and 20 x 38. In the tube subdomain, 
a 34 x 21 grid was used. The grid points were deployed 
nonuniformly to accommodate regions of relatively 
high gradients. 

The computed Sherwood numbers corresponding 
to R’/R = 3, 6, 8, and 10 (for L’ = 6R) are 2.837, 
2.836, 2.835, and 2.835. These numbers are identical 
by any practical measure, so that all of the examined 
ambient domain sizes appear to be equally satis- 
factory. However, the 6R x 6R ambient domain cor- 
responded to the minimum computational time for 
convergence, so that it was adopted for all of the final 
runs. 

The foregoing assessment of the size of the ambient 
subdomain was performed for L/d = 1. The final com- 
puter runs included a range of L/d values. For all 
L}d # 1, the grid point population and deployment in 
the overlap region was maintained identical to that 
for L/d= 1. 

Numerical results 
For the isothermal case, the ambient-including 

model was numerically implemented for the same con- 
ditions, expressed by equation (24), as were used for 
the simple model. The Sherwood number result for 
L/d = 1 has already been mentioned, namely, 2.836. 
This may be compared with the value of 2.727 from 
the simple model. The difference between the two 
results is about 4%. 

A comparison between the Sherwood numbers for 
the ambient-including and simple models is presented 
in Fig. 1 (solid and dashed lines, respectively) over the 
investigated range of L/d between 0.35 and 3. As seen 
in the figure, the two models yield a virtually identical 
variation of Sh with L/d. Typically, the Sh values for 
the ambient-including model are about 5% higher 
than those for the simple model. This is a modest and 
acceptable deviation, especially when note is taken of 
the significant reduction in computational complexity 
and effort that are dividends of the simple model. 

For the non-isothermal case, the Sherwood num- 
bers from the ambient-including and simple models 
are compared in Fig. 2. These results are for the T,, 
pm, and 4m of equation (24), with L/d = 1 and T, 
ranging between 19.5 and 22°C. Once again, the two 
models yield distributions that track each other with 
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(a) (b) (cl 

FIG. 7. Patterns of fluid flow in the gas-vapor space com- 
puted from the ambient-including isothermal model for vari- 
ous ambient subdomain sizes (axial x radial) : (a) 6R x 3R, 

(b) 6R x 6R, and (c) 6R x 8R. RADIUS 

high fidelity. As was true in the isothermal case, the 
Sh values for the ambient-including model are con- 
sistently higher than those for the simple model. The 
deviations are, again, in the 5% range. 

FIG. 8. Pattern of fluid flow in the ambient computed from 
the ambient-including isothermal model. 

GAS-VAPOR 

The Sherwood number results for both the iso- 
thermal and non-isothermal cases provide strong evi- 
dence that the suppression of tube-ambient inter- 
actions as accomplished in the simple models is an 
acceptable practice. This suggests that the closure con- 
ditions that were used at the tube opening for the 
simple models might profitably be used when the 
many complexities of non-isothermal evaporation are 
dealt with, as in the forthcoming section of the paper. 

Fluid flow patterns in the form of streamline maps 
will now be exhibited for the isothermal case. Figures 
7(a)-(c) show the tube subdomain for L/d = 1 for 
ambient subdomains of dimensions 6R x 3R, 6R x 6R, 
and 6Rx 8R, respectively. Note that the tube sub- 
domain includes not only the portion of the tube 
between the liquid surface and the open top but also 
a disk-like part of the ambient situated just above the 
tube. The location of the tube opening is identified in 
Fig. 7, and the streamline segments which lie above 
the opening belong to the ambient. 

INSULATION 1/ 

FIG. 9. Schematic diagram of a representative experimental 
setup for studying non-isothermal evaporation. 

throughout the height of the ambient subdomain. The 
jet entrains fluid from the side, fluid which is drawn 
from the far field along horizontal streamlines which 
later turn to conform to the vertical orientation of the 
jet. 

An overview of Fig. 7 indicates that the streamline 
pattern is virtually independent of the investigated 
variations of the size of the ambient subdomain. This 
finding reinforces a similar finding that resulted from 
a comparison of Sherwood numbers. It is also relevant 
to compare Fig. 7 with Fig. 3(a), the latter cor- 
responding to the simple model. If consideration is 
restricted to the in-tube portion of the streamlines of 
Fig. 7, a marked similarity is seen to exist with the 
streamlines of Fig. 3(a). The only noteworthy differ- 
ence is the slight transverse velocity component in the 
flow entering the opening of the tube-present in the 
ambient-including model and absent in the simple 
model. 

IN-DEPTH MODELING OF THE 

NON-ISOTHERMAL CASE 

The flow pattern in the ambient is exhibited in Fig. 
8. As seen there, the fluid entering the tube from the 
ambient is drawn from the side along nearly hori- 
zontal streamlines which subsequently turn down- 
ward into the tube opening. The fluid which exits the 
tube forms a vertical jet which maintains its identity 

To introduce the upcoming non-isothermal model- 

ing effort, it is useful to briefly consider a typical 
experimental setup for non-isothermal evaporation 
studies such as those of ref. [l]. Such a setup is illus- 
trated in Fig. 9. As seen there, a pool of liquid (water) 
partially fills an open-topped, non-metallic tube. The 
tube is situated in a large, closed cardboard container 
filled with a very low conductivity insulating material 
(a powder). To facilitate the containment of the insu- 
lation and the positioning of the tube, a thin-walled 
cardboard liner (depicted by the dashed lines in the 
figure) is used to create a cavity which houses the tube. 

As discussed in the Introduction, four models, suc- 
cessively with ascending complexity and fidelity to 
reality, will be employed to deal with the non-iso- 
thermal evaporation problem. To enable these new 

AXIS 
1 
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FIG. 10. Computational domains used in the modeling of 
non-isothermal evaporation. 

features to be taken into account within the capa- 
bilities of the available computational resources, 
direct interactions between the tube and the ambient 
will be suppressed by the use of the closure conditions 
used for the simple models. This practice was explored 
in the preceding section of the paper and found to be 
acceptable. There, a correction factor of 5% was 
found applicable for converting Sh values for non- 
ambient-including models to Sh values for ambient- 
including models. Such a correction factor will be used 
for the Sherwood number results to be obtained in 
this section of the paper. 

In the first three of the four models to be examined, 
neither the thickness of the tube wall nor of the liner 
will be taken into account. Rather, the inner bound- 
aries of the insulation will be assumed to coincide with 
the inner walls of the tube. In the fourth model, both 
the tube wall and the liner will be included. 

The computational domains used in the modeling 
are depicted in Fig. 10 along with the coordinates and 
dimensional nomenclature. The diagram shows the 
gas-vapor, liquid, and insulation regions which were 
pictured in Fig. 9. Because of axisymmetry, only the 
right half of what appeared in Fig. 9 is included in Fig. 
10 (the left-hand boundary of Fig. 10 is the symmetry 
axis). 

To facilitate the numerical work, the solution 
domain was divided into three subdomains, respec- 
tively designated as I, II, and III. Subdomain I 
includes both the liquid pool and the lower part of 
the insulation (i.e. below the level of the liquid 
surface), and the designations I, and Ii, have been 
employed to identify these two regions of I. Sub- 
domain II corresponds to the gas-vapor mixture 
which fills the space between the liquid surface and 
the tube opening, while subdomain III is the upper 
part of the insulation. 

Other subdivisions are, of course, possible. Indeed, 
a seemingly more natural subdivision would assign a 
separate subdomain to the gas-vapor, the liquid, and 

the insulation regions. The general purpose computer 
codes used here readily accommodate cylindrical 
regions such as those occupied by the gas-vapor mix- 
ture and the liquid, and annular regions are also well 
accommodated. However, the odd-shaped insulation 
region (a cylinder with a partially penetrating hole) is 
not handled efficiently. Because of this, only cyl- 
indrical or annular subdomains were considered. 

The fact that one of the selected subdomains- 
subdomain I-includes regions containing different 
materials (i.e. liquid and insulation) poses no diffi- 
culties for the present computer codes. Both con- 
tinuous and abrupt variations of the thermophysical 
properties can be handled. At a control volume face 
where a property discontinuity occurs, the harmonic 
mean value of the property is used [12]. Furthermore, 
a solid can be treated as a fluid of infinite viscosity. 

The successive non-isothermal models will now be 
formulated. 

Model NI 1 
This model includes mass, heat, and momentum 

transfer in the gas-vapor mixture, heat conduction in 
the insulation, and heat conduction in the liquid pool. 

The governing differential equations for the gas- 
vapor region, subdomain II, are expressed by equa- 
tions (l)-(4) and (17). In subdomain III (insulation), 
the heat conduction is governed by 

ki,,V2T = 0. (36) 

For subdomain I (liquid and insulation), the heat 
conduction is described by 

where 

k**V2T = 0 (374 

k** = k in1 W,T 8) k** = k. 1”s in1 b. (37b) 

The numerical value of k,,, was the mean of the ther- 
mal conductivities of water at r = R/2 on the upper 
and lower bounding surfaces of the water. Owing to 
the inherent uncertainty of k,,,, a representative value 
was used. 

Attention will now be turned to the boundary con- 
ditions and to the conditions of continuity at the inter- 
faces of the solution domains. At the external bound- 
aries of the insulation 

T= T,. (38) 

The rationale for this specification is that the thermal 
resistance of the insulation is much greater than that 
of the convection external to the insulation (Biot num- 
ber much greater than one). If the insulation container 
rests on a solid surface, the surface is also assumed to 
be at T,. 

At the tube opening, the boundary conditions from 
the simple models will be adopted, namely, equations 
(12) for the velocities, (13) for WI, and (22) for the 
temperature. This practice has been amply justified. 
Along the symmetry axis, the boundary conditions 
for subdomain II are conveyed by equations (16) and 
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(23), while for subdomains I, and I,, equation (23) is is made of the previously discussed equations for 
applicable. 7’,,,(1,/111) and Z’&II/III) as boundary conditions at 

The two preceding paragraphs have dealt with the the I,/111 and II/III interfaces. Any quantities in these 
external boundaries of the solution domain as a equations which belong to subdomains I, and II are 
whole. Consider now the interface between sub- held fixed at the most recently available values. The 
domains I, and III, where temperature and heat flux temperature field in III, which is a conduction sub- 
continuity must both be satisfied locally. Both these domain, is solved to near convergence by line-by- 
conditions can be incorporated into a single difference line application of the tridiagonal matrix algorithm in 
equation. To this end, at any r at which there is a alternate directions. 
vertical array of grid points, let Ti”,(I,/III), Tin, and The action is then transferred to subdomain I 
T1, respectively denote the temperatures at a point on which, in this model, is a conduction region and which 
the interface between Ib and III, at a point in sub- was solved by the same procedure used for region III. 
domain III at a distance 6,,, above the interface, and The equations for Ti,t(I,/II) and T,.,(I,/III) served as 
at a point in subdomain I, at a distance Br, below the boundary conditions, with any quantities pertaining 
interface. Then to II and III held fixed. 

k”,[T,,, - T”,u,/ml/&, = kn,wi”t&/Iw - TI,mb 
After I is solved, the action goes to II, which is a 

subdomain where convection occurs. At each visit to 
II, the SIMPLER algorithm was used to perform 15 

(39) . iterations. Once again, quantities appearing in the 

or boundary condition equations which belong to other 
subdomains are held fixed when working in II. Fur- 

~&/III) = (~,bT,,r+6r,,T,b)/(8,b+6,,~). (40) h t ermore, as already noted, W, and u at the I,/11 

With regard to the interface between subdomains 
II and III, the local implementation of temperature 
and heat flux continuity leads to an equation for Tin, 
(II/III) similar to equation (40), with the main differ- 
ence being that the thermal conductivities k* and k,,,, 
respectively for the gas-vapor mixture and the insu- 
lation, appear. On the II side of the II/III interface, 
the boundary conditions for the velocity and the mass 
fraction are as conveyed by equations (14) and (15). 

The other interface to be considered is that between 
subdomains I, and II. If account is taken of the evap- 
oration on the II side of the interface, continuity of 
energy at any location on the interface takes the form 

-k**@T/ax>,, = -k*(aT/ax)l,+(puh,,),, (41) 

interface lagged by one iteration. 
After the 15 SIMPLER iterations were completed 

in II, the action is returned to III, and another cycle 
is begun. 

Solutions were obtained employing uniform grid 
distributions, except for the radial distribution of 
points in subdomain I, for which Ar changed at r = R. 
The computations in III were performed with a 
25 x 15 uniform grid (axial x radial). The grid for I 
was a 26 x 36 non-uniform distribution (axial x 
radial). The first 21 radial points were uniformly 
deployed to line up with those of II, while the remain- 
ing 15 radial points lined up with those of III. Sub- 
domain II had a 25 x 21 grid, with the 25 axial points 
placed to line up with III. The computations were 
confined to L/d = 1. 

where k** = k WtT and k* is the conductivity of the gas, 
both at already discussed reference states. The velocity Model NI 2 
u appearing in equation (41) is given by equation (1 l), The difference between models NI 2 and NI 1 is 
applied locally. The finite difference form of equation the inclusion in the former of radiation heat transfer 
(41) yields an equation for T&$1). 

On the II side of the I,/11 interface, the velocity 
conditions are stated by equations (9) and (1 l), now 
applied locally, and the mass fraction condition of 
equation (9) is also applied locally. Since the solution 
in subdomain II is to be obtained iteratively, it was 
found convenient to take the interface values of W, 
and u from the preceding iteration. Note that W1 is 
determined assuming that each location on the inter- 
face is a saturation state at temperature T,,,(I,/II). 
The actual determination parallels that discussed fol- 
lowing equation (9), with suitable modifications to 
take account of the fact that the local surface tem- 
perature is T&/II) and not T,. 

The pattern of solution is based on successive visits 
to subdomains III, I, and II, in that order. Suppose 
that this process is in progress and that a new cycle is 
about to begin. When working in subdomain III, use 

among the bounding surfaces of the gas-vapor region 
(subdomain II). Consideration is given to radiation 
because of its competitiveness with natural convec- 
tion. The radiative transfer was activated by the nat- 
urally occurring temperature differences among the 
water surface, the tube wall, and the ambient. 

The net effect of accounting for the radiative trans- 
fer is to significantly modify the T&,/II) and 
Tin,(II/III) equations. Aside from this, all other 
aspects of model NI 1 are retained, as is the solution 
methodology. Therefore, attention will be confined 
here to describing the basis for the modification of the 
aforementioned equations. 

To facilitate the discussion, reference may be made 
to Fig. 11, which shows the bounding surfaces of the 
gas-vapor space (subdomain II). The cylindrical wall 
of the tube may be regarded as being subdivided into 
an array of ring-like elements. Each such ring is, in 
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FIG. 11. Diagram relevant to the analysis of radiant inter- 
change in the gas-vapor space. 

fact, the exposed face of a surface-adjacent control 
volume. Two representative ring elements, i and j, are 
shown in the figure. The water surface is subdivided 
into an array of annular elements, which are also the 
exposed faces of control volumes, as illustrated by 
element k. 

To create an enclosure, as is needed for the analysis 
of radiative interchange, the top of the tube is 
regarded as being closed by a fictive surface t. This 
surface behaves like a blackbody absorber and emitter 
in order to correctly represent the radiative role of the 
ambient. The ambient is postulated as being a region 
filled with blackbody radiation corresponding to tem- 
perature T,, so that the fictive black surface is also 
assigned the temperature T,. 

In the experimental setup which motivated the 
modeling, the tube which contained the evaporating 
water was made of opaque polyethylene, the emiss- 
ivity of which is only slightly less than one. Similarly, 
the emissivity of the water surface is near one. With 
this, and taking account of the fact that the apparent 
emissivity of a cavity exceeds the actual emissivity of 
the surfaces (Chap. 6 in ref. [13]), there is little loss 
of accuracy in assuming that the side and bottom 
bounding surfaces of the gas-vapor space are black. 

Attention may now be turned to the modification 
of the equation for Ti”,(I,/II) which applies locally at 
the I,/11 interface. The net rate of outflow of energy 
by radiation per unit area at an annular element such 
as k (Fig. 11) is 

(42) 

In this equation, the first term on the right is the 
radiant energy emitted at k, while the second and third 
terms represent absorption at k, respectively due to 
emission at the fictive surface t and at the side wall. 

The quantities Fk_, and Fk_j are angle factors. These 
are dimensionless numbers between 0 and 1 the value 
of which represents the fraction of the radiation leav- 
ing one surface which arrives at another surface. For 

example, F,_, is the fraction of the radiation which 
leaves the annular surface k that arrives at disk t. 
The numerical values of the needed angle factors are 
readily obtained from information given in ref. [ 131. 

The inclusion of qradk from equation (42) on the 
right-hand side of equation (41) completes the energy 
balance at the I,/11 interface. Subsequent dis- 
cretization yields the equation for Ti,,(I,/II) (note that 
Tk and that Z’JJII) are one and the same). 

To avoid the T4 nonlinearities inherent in the radi- 
ation representation, the following linearization is 
employed : 

T4 = 4(T-)3T-3(T-)4. (43) 

Here, T- denotes the temperature at the preceding 
iteration, while T represents the temperature at the 
present iteration. When T = T-, as occurs at con- 
vergence, then equation (43) is a true identity. 

Linearization (43) was applied to Ti’ and T;’ in 
equation (42) but not to Ti, since T, is a known 
constant. The linearized form of equation (42) was 
used in energy balance (41). 

The accounting of radiative interchange in the T,,, 

(II/III) equation follows the same pattern as was just 
discussed for T&,/II). The basic step is to introduce 
a radiation term into the energy balance at the II/III 
interface. Such a term, appropriate to any surface 
element i on the interface (Fig. 1 l), is 

qrad,i = UT;-oT;F,_, - 1 aT;F,, - ccT;F, L. 
side hat 

(4.4) 

Note that the right-hand side includes absorption at i 
due to emission at the top, side, and bottom bounding 
surfaces of the space. In the summation over the side 
surface, there is a term aTfFiiii, which represents emis- 
sion from element i that is incident on itself. 

Equation (44) is linearized in accordance with equa- 
tion (43) and then introduced into the local energy 
balance at the II/III interface. After discretization and 
noting that T, is synonymous with T,,,(II/III), the 
sought-for equation for T&II/III) is obtained. 

This completes the NI 2 model. The computational 
aspects are the same as those for the NI 1 model. 
Computations were performed for L/d = 1. 

Model NI 3 
The numerical solutions for models NI 1 and NI 

2 revealed that in the liquid pool, the temperature 
decreased in the vertically upward direction. In those 
models, the liquid was postulated to be stationary 
and heat conduction was the only mode of energy 
transport. In the presence of an upward decreasing 
temperature, natural convection occurs when the 
liquid-pool Rayleigh number exceeds a threshold 
value. 

The special feature of model NI 3 is to take account 
of natural convection in the liquid pool while main- 
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taming all the other attributes of model NI 2. Atten- 
tion will now be focused on this new feature. 

Before presenting the governing equations for natu- 
ral convection in the liquid pool, it is relevant to 
recall from Fig. 10 that the pool occupies only part of 
subdomain I, namely, region I,. Since the computer 
program requires a common set of differential equa- 
tions for all of subdomain I, it will be expedient to 
write the equations in generalized form and then to 
tailor them to regions I, and Ib by proper selection of 
the thermophysical properties. 

Furthermore, to achieve a concise presentation, the 
statement of the governing equations will be 
accomplished by referring to earlier equations and 
indicating appropriate changes. Conservation of x- 
and r-momentum is given by equations (1) and (2), 
with p* and $’ replaced by p** and p**. Mass con- 
servation is expressed without change by equation (3). 
Energy conservation is given by equation (17), with 
p*, c,*, and k* replaced by p**, I$*, and k**, and with 
the last term on the right deleted. 

These equations will now be tailored to subdomains 
I, (liquid pool) and It, (insulation). For the insulation 
region, set fi** 1: co. This leads to u = v = 0, so that 
heat conduction is the only mode of energy transport, 
as it should be. Furthermore, in the insulation region, 
k** = k l”S. 

For the liquid region, p**, p**, I$*, and k** are 
water properties obtained by averaging the property 
values at r = R/2 on the upper and lower bounding 
surfaces of the pool. The density p which appears in 
the body force term of the x-momentum equation 
was evaluated directly from the density-temperature 
relation for liquid water, without employing the Bous- 
sinesq linearization. 

With the specification of the governing equations 
now complete, the boundary conditions relevant to 
region I, may be considered. Nothing special need be 
done at the interface between regions I, and I, because 
everything is taken care of by the specified ther- 
mophysical properties (e.g. the zero velocity values in 
Ib are imposed at the 1,/I, interface). At the tube axis, 
t’ = &jar = 0 is imposed, along with aT/& = 0 from 
before. 

The boundary conditions at the I,/11 interface (i.e. 
the liquid surface) require greater attention. The u 
velocity of equation (11) for the II side of the interface 
continues to apply and, strictly speaking, the u velocity 
on the I, side should be given by u,, = ~,,(p,,/p,~). 

However, pl1 /P,_ - 0.001 for water evaporating into 
air. Therefore, it appears reasonable to take u,, N 0, 
which immobilizes the interface and makes the prob- 
lem quasi-steady. 

The value of the v velocity at the interface, which is 
common to both the I, and II sides, is obtained from 
the continuity of shear stress 

p**](avjax) + (at4jar)l18 = p*[(avjax) + @4jar)],,. 

(45) 

In accordance with the foregoing, (&jar),% 1: 0. With 
this and with the discretization of equation (45) an 
equation for v(I,/II) emerges. This completes the dis- 
cussion of the boundary conditions. 

The numerical work for this model involves one 
major change relative to that for models NI 1 and NI 
2. The new feature is that convection now occurs in 
subdomain I. Correspondingly, at each visit to I, the 
SIMPLER algorithm was used to perform 15 iter- 
ations. Aside from this change, the other aspects of 
the numerical work were the same as for the preceding 
models. 

Model NI 4 
The final stage of the modeling is aimed at taking 

account of the presence of the tube wall and of the 
liner which served to contain the insulation. This is 
accomplished in the forthcoming model NI 4, which 
also continues to include all features of model NI 3. 

The liner, depicted by the dotted line in Fig. 9, is 
external to the tube. Although their thickness and 
composition were specific to the companion experi- 
ments, it was felt worthwhile to assess the effect of 
these elements because they do represent a link with 
reality. In principle, since only heat conduction is 
involved, incorporation of these elements into the 
finite difference solution method should have pre- 
sented no difficulty. However, since the combined 
thickness of the tube wall and the liner (0.2 cm plus 
0.1 cm) was slightly smaller than the radial step Ar in 
the adjacent insulation, some refitting of the grid was 
necessary. 

The details of the refitting are conveyed in ref. [l]. 
The net result was that for the tube side wall and the 
liner, the radial grid-point deployment included points 
at the inner surface of the tube, at the tube-liner 
interface, and at the outer surface of the liner. For the 
bottom wall of the tube and the disk-like liner beneath 
it, a similar positioning of points was used. Con- 
siderable pains were taken to verify the independence 
of the evaporation rate from the layout of the grid 
points. The k value of the tube was 0.4 W m-’ K-‘, 
while that for the liner (which was made from a con- 
ventional manila folder) was 0.14 W m -’ K-‘. 

Numerical results 
The numerical solutions were carried out for 

the representative operating conditions T, = 22”C, 
pm = 740 mm Hg, and 4, = 0.3, which are the same 
as those of equation (24). The geometry of the system, 
specified in terms of the nomenclature of Fig. 10, is 
defined by: R = 3.05, d = 6.1, L = 6.1, L, = 14.2, 
L, = 30, R0 = 15, tube wall thickness = 0.2, and liner 
thickness = 0.1, where all dimensions are in cm. From 
the foregoing, it is seen that L/d = 1. These dimen- 
sions were chosen to model the apparatus used in the 
complementary experiments. 

The numerical solutions yielded the mass transfer 
coefficient K and the Sherwood number Sh as defined 
by equation (29), in which &f is the rate of evaporation 
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FIG. 12. Sherwood number results for the various non- 
isothermal models. 

and pls is the surface-averaged value obtained from 
equation (30). 

The Sherwood number results are presented in Fig. 
12, where they are parameterized by the model 
number. The plotted points include the 5% correction 
factor (an increase) that was developed earlier to 
account for the approximate treatment of the inter- 
actions between the tube and the ambient. From the 
figure, it is seen that model NI 1 yields a very low 
value of the Sherwood number (i.e. S/I = 0.47) and 
that major increases occur between models NI 1 and 
NI 2 and between models NI 2 and NI 3. There is 
only a slight increase between models NI 3 and NI 4. 

The aforementioned characteristics of the Sher- 
wood number results are entirely plausible. To estab- 
lish plausibility, reference may be made to Fig. 2, 
where it was demonstrated that the Sherwood number 
decreases as the temperature of the surface of the 
liquid is depressed relative to the ambient tempera- 
ture. Among the cases exhibited in Fig. 12, model NI 
1 possesses the largest thermal resistance between the 
ambient and the liquid surface and, correspondingly, 
the greatest surface temperature depression and the 
lowest Sherwood number. 

The participation of radiative transfer, first incor- 

porated into the model of case NI 2, provides an 
additional path for heat transfer and significantly 
decreases the thermal resistance and the temperature 
depression, with a consequent major increase of the 
Sherwood number. Natural convection in the liquid 
pool, activated in model NI 3, further decreases the 
resistance and the depression, and thereby gives rise to 
a further significant increase in the Sherwood number. 
The activation of the tube wall and liner heat con- 
duction tends, primarily by axial conduction, to 
decrease the resistance, but the change is small and 
the increase in the Sherwood numbers between models 
NI 3 and NI 4 is also small. 

The presentation of results will conclude with the 
velocity profiles for the gas-vapor space for model 
NI 4 (the most complete model). These results are dis- 
played in Fig. 13, where the profiles are parameterized 
by the axial station x/L (x/L = 0 at the liquid surface 
and x/L = 1 at the tube opening). From Fig. 13, it is 
seen that the direction of fluid flow in the core of the 
tube is downward, whereas adjacent to the walls the 
fluid flow is upward. On the basis of information 
presented in Fig. 3 and in Figs. 4 and 5, the flow 
pattern of Fig. 13 suggests that thermal effects have 
overridden the species-related buoyancy which 
induces an oppositely directed flow pattern. 

CONCLUDING REMARKS 

The modeling and computational work performed 
here for the evaporation of a liquid from a partially 
filled cylindrical tube has provided a set of definitive 
conclusions. First, Sherwood number results of 
acceptable accuracy can be obtained without having 
to extend the numerical solutions into the ambient 
above the tube. The use of closure conditions at the 
tube opening expressed by equations (12), (13) and 
(22) enables the ambient to be excluded from the 
solution domain. Second, the Sherwood number 

-100 - 
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FIG. 13. Velocity profiles in the gas-vapor space for L/d = 1 computed from model NI 4. 
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decreases as the temperature at the surface of the 
liquid pool is depressed relative to the ambient tem- 
perature. The extent of the depression is related to 
the magnitude of the thermal resistance between the 
ambient and the liquid surface. 

Radiative interchange among the bounding sur- 
faces of the gas-vapor space and the ambient sig- 
nificantly decreases the temperature depression at the 
liquid surface and brings about a major increase in 
the Sherwood number. Natural convection in the 
liquid pool also decreases the thermal resistance and 
causes a further substantial Sherwood number 
increase. 
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MODELES ET SOLUTIONS DE L’EVAPORATION ISOTHERME ET NON-ISOTHERME 
DANS UN TUBE PARTIELLEMENT REMPLI 

Rbmn~L’evaporation dun bain liquide qui remplit partiellement un tube circulaire, dans une ambiance 
au repos, a et& Btudite par plusieurs modeles accompagnes de resolutions numeriques. La modelisation 
considtre : (a) l’bvaporation dans des conditions isothermes ou non a cause de l’absence ou de la presence 
d’un abaissement de temperature a la surface du liquide, (b) les interactions entre les champs de vitesse, 
de fraction de masse et de temperature pour la phase gaz-vapeur dans le tube et dans l’ambiance, (c) la 
convection naturelle dans l’espace gaz-vapeur, (d) le rayonnement dans l’espacc gaz-vapeur, (e) la con- 
vection naturelle dans le bain liquide, et (f) la conduction dans l’enveloppe autour du tube, dans le tube 
et dans l’intervalle. En utilisant un systeme special de conditions de fermeture a l’extremiti: superieure du 
tube, on trouve que les flux d’ivaporation (ou le nombre de Sherwood) peuvent etre obtenus avec une 
precision acceptable sans avoir a Btendre les resolutions numeriques a l’ambiance. Une autre constatation 
est que l’abaissement de temperature a la surface du liquide diminue le nombre de Sherwood. Lorsque le 
transfert radiatif dans l’espace gaz-liquide est active, l’abaissement de temperature decroit et le nombre de 
Sherwood augmente sensiblement. La convection naturelle dans le bain liquide agit aussi pour diminuer 

l’abaissement de temperature et pour augmenter le nombre de Sherwood. 

ISOTHERME UND NICHTISOTHERME VERDUNSTUNG AUS EINEM TIELWEISE 
GEFULLTEN ROHR 

Zusannnenfassung-Die Verdunstung einer Fliissigkeit aus einem kreisrunden, teilweise gefiillten Rohr in 
eine ruhende Umgebung wurde mit Hilfe einer Reihe von Modellen untersucht. Die Modelle beriick- 
sichtigten : (a) Verdunstung unter isothermen als such unter nichtisothermen Bedingungen, entsprechend 
dem Nichtvorhandensein oder dem Vorhandensein einer Temperaturabsenkung an der Fliis- 
sigkeitsoberflache, (b) Wechselwirkungen zwischen den Geschwindigkeits-, Konzentrations- und Tem- 
peraturfeldern im Gas/Dampf-Raum im Rohr und in der Umgebung, (c) Natilrliche Konvektion im 
Gas/Dampf-Raum, (d) Strahlungsaustausch im Gas/Dampf-Raum, (e) Natiirliche Konvektion in der 
Fliissigkeit, (f) Wlrmeleitung in der Wiirmedlmmung um das Rohr, in der Rohrwand und in der Schicht 
zwischen Rohr und Wiirmedammschicht. Mit Hilfe eines speziellen Satzes von Schliel3bedingungen am 
offenen Ende des Rohres konnten Verdunstungsraten (bzw. Sherwood-Zahlen) mit annehmbarer Genauig- 
keit berechnet werden, ohne die numerische Liisung auf die Umgebung erweitern zu mtissen. Eine andere 
wichtige Erkenntnis war, daB die Temperaturabsenkung an der FliissigkeitsoberfIihe die Sherwood-Zahl 
verringert. Wurde der Strahhmgsaustausch im Gas/Fltissigkeits-Raum beriicksichtigt, so verringerte sich 
die Temperaturabsenkung und die Sherwood-Zahl wurde stark erhiiht. Die natiirliche Konvektion in der 

Fliissigkeit verringert ebenfalls die Temperaturabsenkung und erhiiht die Sherwood-Zahl. 
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MOJ@JIki ki PEIIlEHkIII m CJ’WIAEB H3OTEPMWIECKOI-0 I4 
HEkDOTEPMWIECKOI-0 ISCI-IAPEHkiR M3 TPYEM, ‘4ACTWIHO 3AI-IOJIHEHHOti 

XklAKOCTbIO 

-Ha uenoM pane Moneneti pBcnewxo mz-cnenonuo sscnapewe ~3 6o~n~1oro o6wsta XHLI- 
KOCTH, KOTOP~II S~CTBWIO 3anoJMgex ~p~rnyio ~py6y, B HenoABmcHyIo o~pyxarouxym cpeny. MOA~JIH 
y9HTbIBaJIH: (a) HCl’lK~HHe KKK B E30TC4_WIi¶eCKHK, TBE H HeE3OTCpMIiWXKK yCJIOBliS& KOrAa EMCc7T 

MeCTO HAB OTCyTCTByCT IIOHiaeHBe TehSIIqaTypbl llOBepXHOCTH XCHAKOCTH, (6) B3aEMOAefiCTBAJl MeXAy 

IIOJIKMH CKOpOCTH, MaCCOCOAepXCaaRK E TeMIIepaTypbl B ItapOrB3OBOM IIpOCTpaHCTBe B Tpy6-2 H B OKpy- 

XsuOUleti Cpene, (B) eCTeCTBeHHaK ICOHBeKAEK B IIapOrB3OBOM IlpOIXpaHCTBe, (r) JIy’IliCTb& TeMOO6MeH B 

lIapOr;uOBOM IIpOCTpaHCTBe, (A) eCTeCTBeHHaS KOHBeKAHR B o6ewe XEAKOCTH H (e) TelIJlOIIpOBOAHOCTb 

B H3OJIKWiOHHOM MaTepHaJIe BOKpyr ~py6121, B ee cTeHKe A B CJlOe MenCpy ~py6oR H A3OJXXIWefi. kiC.lIOJIb- 

3yK pKA CneAHBJlbHbIX yCAOBHii 3aMblKaHHB AJIK OTKpbITOii BepXHeii PaCTH ~py6q IIOKiUKHO, ST0 CKO- 

pocrb rrcnapemin (T.e. ww10 IJIepeyna) MO~PU~O 0npeneJufla c npHehuehsoii TOSHOCT~H), He peum 

ypaBHeHHK lIepHOC?3 AJIK OKpysCaZOIUeti CpeAbL KpoMe TOrO, 6~10 yCTaHOBJleH0, ‘iTO IlOHHXeHHe TeM- 

IIepaTypbI IIOBepXHOCTH XHAKOCTE IlpHBOAHT K yMeHbILIeHHI.0 PACAa mepByAa. B CnyVae 6onee HHTeH- 

CHBHOrO Jl~HCTOrO TeUJIOO6MeHa B npoCTpaHCTBe MelKAy ra30h4 H XHmcOCTbH) TemepaTypa 

CHEXGWlaCb MeHbIlIe H ‘IHCJIO mepByAa BOSpaCTaJIO. To XC GiMOC. Ha6JIKWmCb H llpH eCTCCTBCHHOii 

KOHB~KAHE B o6%ebse ~cu~lco~ni. 


